Oops! It appears that you have disabled your Javascript. In order for you to see this page as it is meant to appear, we ask that you please re-enable your Javascript!
pornolar

8. Sınıf Özdeşlikler Konu Anlatımı

8. Sınıf Özdeşlikler Konu Anlatımı

ÖZDEŞLİKLER
1. İki Kare Farkı - Toplamı
 I) a2 – b2 = (a – b) (a + b)
II) a^2 + b^2 = (a + b)^2 – 2ab  ya da
    a2 + b2 = (a – b)2 + 2ab  dir.
2. İki Küp Farkı - Toplamı
   I) a3 – b3 = (a – b) (a2 + ab + b2 )
  II) a3 + b3 = (a + b) (a2 – ab + b2 )
 III) a3 – b3 = (a – b)3 + 3ab (a – b)
IV) a3 + b3 = (a + b)3 – 3ab (a + b)
 3. n. Dereceden Farkı - Toplamı
I) n bir sayma sayısı olmak üzere,
   xn – yn = (x – y) (xn – 1 + xn – 2y + xn – 3 y2
 + ... + xyn – 2 + yn – 1) dir.
II) n bir tek sayma sayısı olmak üzere,
    xn + yn = (x + y) (xn – 1 – xn – 2y + xn – 3 y2
 – ... – xyn – 2 + yn – 1) dir.
 4. Tam Kare İfadeler
I) (a + b)2 = a2 + 2ab + b2
(a + b)2 = (a – b)2 + 4ab
II) (a – b)2 = a2 – 2ab + b2
(a – b)2 = (a + b)2 – 4ab
III) (a + b + c)2 = a2 + b2 + c2 + 2(ab + ac + bc)
IV) (a + b – c)2 = a2 + b2 + c2 + 2(ab – ac – bc)
5. (a ± b)n nin Açılımı
Pascal Üçgeni
(a + b)n açılımı yapılırken, önce a nın
n . kuvvetten başlayarak azalan, b nin 0 dan
başlayarak artan kuvvetlerinin çarpımları
yazılıp toplanır.Sonra n nin Paskal üçgenindeki karşılığı
bulunarak kat sayılar belirlenir.
(a – b)n yukarıdaki biçimde yapılır ancak b nin;
çift kuvvetlerinde terimin önüne (+),
tek kuvvetlerinde terimin önüne
(–) işareti konulur.

 

• (a + b)3 = a3 + 3a2b + 3ab2 + b3
• (a – b)3 = a3 – 3a2b + 3ab2 – b3
• (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 +b4
• (a – b)4 = a4 – 4a3b + 6a2b2 – 4ab3 + b4

 

 

ÖRNEKLER:

1-)ax+bx+ay+by=(ax+bx)+(ay+by)
                           =x(a+b)+y(a+b)
                           =(a+b).(x+y)
2-)x-ax+2x-2a=(x-ax)+(2x-2a)
                       =x(x-a)+2(x-a)
                       =(x-1).(a-1)
3-)ax-a-x+1=(ax-a)+(-x+1)
                   =a(x-1)-1(x-1)
                   =(x-1).(a-1)

Share this post

Bir cevap yazın